

A
n

u
j S

in
gh

 T
o

m
ar

2
0

0
8

A
w

k
 P

ro
g

ra
m

m
in

g

Complete reference to awk programming
Plus a few UNIX concepts which will be necessary in a long run.

Name: - Anuj Singh Tomar
Address: - Gola Ka Mandir
Mobile: - +919926604345
Landline: - 07512361477

Awk Programming Notes

An Original Work By: - Anuj Singh Tomar Mobile: +919926604345
2

Table of Contents

AWK PROGRAMMING .. 3

Ways in which to use Awk .. 3

Identifying variables and strings of characters .. 4

Selecting with regular expressions ... 4

 Specifying beginning of lines .. 5

Selecting records by specific database components ... 5

 Finding patterns within the fields ... 5

Creating and Using awk command files .. 6

Employing Variables ... 7

Using variable names as words .. 7

Performing arithmetic operations in awk ... 8

Maintaining a running Total ... 8

Using the printf function to format output ... 8

Left and Right justifying the output .. 9

Aligning the decimal and truncating numbers .. 9

COMMAND SUMMARY .. 9

Summary of awk predefined variables.. 10

Summary of awk printing commands ... 10

Summary of operators ... 11

Awk Programming Notes

An Original Work By: - Anuj Singh Tomar Mobile: +919926604345
3

AWK PROGRAMMING

One of the most powerful data manipulation utilities is awk, a program that incorporates a wide range

of data matching, modifying, and programming features. The awk is the first letters of the last names of

its three developers, Aho, Weinberger, and Kernighan. The awk utility like grep is a pattern matching

tool, but with the added ability to perform specified, often complex, operations on records or on

specific fields in records after a pattern is matched.

In addition awk is fully programmable- capable of supporting the loops, conditional statements, and

variables expected in a programming language.

One of the most important differences b/w awk and grep is awk's ability to select records on the basis

of the location of values within a record. In addition awk can select pieces of a record for processing.

This can only be accomplished when the data is organized in a structured manner, as in a database.

Ways in which to use Awk

the awk utility reads data files or input that is the output of another utility. In this section several

introductory forms of the awk utility are used to manipulate data read from files.

 awk '/anuj/ {print}' records

All lines containing anuj in file records are displayed

$ awk '/anuj/ {print}' records

anuj singh tomar:+919926604345:06:02:1987

 awk '/anuj/' records

all lines that contain the target anuj are displayed.

anuj singh tomar:+919926604345:06:02:1987

 Not specifying a pattern

 awk '{print}' records

 Every record of the entire file is displayed.

 awk '{print $1' records

 The first field of the file records is displayed.

$ awk '{print $1}' records

anuj

satyendra

raj

 awk 'print $3 $2 $1' records

The three fields of the file records are displayed without spaces b/w the fields.

Awk Programming Notes

An Original Work By: - Anuj Singh Tomar Mobile: +919926604345
4

tomar:+919926604345:06:02:1987singhanuj

narwariya:+919926547924:04:07:1987satyendra

gurjar:+919977186990:08:07:1987kishoreraj

 awk 'print $3, $2, $1' records

the three fields of the file records are displayed with spaces b/w the fields.

$ awk -F: '{print $3, $2,$1}' records

06 +919926604345 anuj singh tomar

04 +919926547924 satyendra narwariya

08 +919977186990 raj kishore gurjar

05 +919893110089 navdeep rajput

 $awk '{print $0}' records

Prints all the records from the records file.

$ awk -F: '{print $0}' records

anuj singh tomar:+919926604345:06:02:1987

satyendra narwariya:+919926547924:04:07:1987

raj kishore gurjar:+919977186990:08:07:1987

navdeep rajput:+919893110089:05:06:1987

Identifying variables and strings of characters

The $1 is a variable, awk interprets every variable as instruction to replace it with its value. we

can create variable and use it with awk.

$ awk -v item='Name = ' '{print item,$1}' records

Name = anuj

Name = satyendra

Name = raj

Name = navdeep

the -v option tells awk that the first argument passed to awk tells awk that a variable

definition follows.

 ' ' Are used to assign value to a variable

“ ” To print a string

 $ awk -F: '{print "Name = ",$1,"Number = ",$2}' records

Name = anuj singh tomar Number = +919926604345

Name = satyendra narwariya Number = +919926547924

Name = raj kishore gurjar Number = +919977186990

Selecting with regular expressions

 $ awk '/anuj/ {print $0}' records

anuj singh tomar:+919926604345:06:02:1987

$ awk '/[Aa]nuj/ {print $0}' records

anuj singh tomar:+919926604345:06:02:1987

Anuj singh tomar:+919926604345:06:02:1987

Awk Programming Notes

An Original Work By: - Anuj Singh Tomar Mobile: +919926604345
5

 Specifying beginning of lines

 $ awk -F: '/^v/ {print $1,$2}' records

All lines in the records file that start with a character v are displayed.

 vidyasagar yadav +919349736772

 The output will be all lines starting with other than a through m

$ awk -F: '/^[^a-m]/ {print "Name = ", $1}' records

Name = satyendra narwariya

Name = raj kishore gurjar

Name = navdeep rajput

Name = ravi poddar

Name = vidyasagar yadav

 The output will be all the lines starting with a through m

$ awk -F: '/^[a-m]/ {print "Name = ", $1}' records

Name = anuj singh tomar

Name = Anuj singh tomar

Name = madhuraj tomar

Name = amit kumar gupta

Selecting records by specific database components

 $ awk -F: '$1=="Anuj singh tomar" {print $0}' records

It shows those records which have anuj in their first field

Anuj singh tomar:+919926604345:06:02:1987

 This command will display all those records which have +919926604345 in its 2
nd

 field.

$ awk -F: '$2==+919926604345' records

anuj singh tomar:+919926604345:06:02:1987

Anuj singh tomar:+919926604345:06:02:1987

 This command shows those files which have either gurjar or tomar in it.

$ awk '/gurjar/ || /tomar/' records

anuj singh tomar:+919926604345:06:02:1987

Anuj singh tomar:+919926604345:06:02:1987

raj kishore gurjar:+919977186990:08:07:1987

madhuraj tomar:+919977859602:04:01:1987

 $ awk -F: '$1=="Anuj singh tomar" && $2=="+919926604345"' records

Anuj singh tomar:+919926604345:06:02:1987

 Finding patterns within the fields

 This will search for '6' in 3
rd

 field

$ awk -F: '$3 ~ /6/' records

Awk Programming Notes

An Original Work By: - Anuj Singh Tomar Mobile: +919926604345
6

anuj singh tomar:+919926604345:06:02:1987

Anuj singh tomar:+919926604345:06:02:1987

 It shows those lines which have 6 in it.

$ awk '/6/' records

anuj singh tomar:+919926604345:06:02:1987

Anuj singh tomar:+919926604345:06:02:1987

satyendra narwariya:+919926547924:04:07:1987

raj kishore gurjar:+919977186990:08:07:1987

navdeep rajput:+919893110089:05:06:1987

madhuraj tomar:+919977859602:04:01:1987

vidyasagar yadav:+919349736772:05:12:1987

 Shows those lines which have 5 fields

$ awk -F: ' (NF == 5)' records

anuj singh tomar:+919926604345:06:02:1987

Anuj singh tomar:+919926604345:06:02:1987

$ awk -F: ' (NF == 4)' records

no output since no line has 4 fields all have 5 fields.

Creating and Using awk command files

when we place the complex awk commands in a separate file and then associate these files on the

command line then we reduce both complexity and the potential for errors.

Example

In a separate file place the following code.

 /Anuj/ {print $1, $2}

On command line enter foll.

awk -F: -f ex1.ak records

The resulting output will be the first and second fields of the records in file records that contain the

string Anuj. -F: should be used before -f otherwise it will show an error we can also specify field

separator in the ex1.ak file and we will see it later.

$ awk -F: -f ex1.ak records

Anuj singh tomar +919926604345

 $ cat ex2.ak

BEGIN {

Awk Programming Notes

An Original Work By: - Anuj Singh Tomar Mobile: +919926604345
7

FS=":"

OFS="-----"

ORS="\n"

}

{

print "Record no. is " NR,$1,$2

}

 $ awk -f ex2.ak records

Record no. is 1-----anuj singh tomar-----+919926604345

Record no. is 2-----Anuj singh tomar-----+919926604345

Record no. is 3-----satyendra narwariya-----+919926547924

Record no. is 4-----raj kishore gurjar-----+919977186990

Record no. is 5-----navdeep rajput-----+919893110089

Record no. is 6-----madhuraj tomar-----+919977859602

In FS we specify the record Field Separator.

In OFS we specify the Output Field Separator.

In ORS we specify the Output Record Separator.

The BEGIN's opening curly brace starts at the same line and not on the new line.

Employing Variables

User defined variables are also supported by awk and they work when you are trying to improve the

readability of the code.

 Create a file ex3.ak with the following awk code.

$ vi ex3.ak

BEGIN {

FS=":"

}

/Anuj/ {

name=$1

number=$2

print name, price

}

$ awk -f ex3.ak records

Anuj singh tomar +919926604345

Using variable names as words

in awk, literals are always enclosed in quotation marks, variables on the other hand are not quoted.

Ex.

Awk Programming Notes

An Original Work By: - Anuj Singh Tomar Mobile: +919926604345
8

 $ awk -F: '/Anuj/{name=$1; print "name",name}' records

name Anuj singh tomar

Performing arithmetic operations in awk

In addition to manipulating character strings, the awk utility can apply arithmetic operations to

variables and data.

Ex.

Subtract one day from date of birth in file records and show the filtered records from 2 to 4.

 $ awk -F: 'NR==2,NR==4{ print NR,$1,$3-1}' records

2 Anuj singh tomar 5

3 satyendra narwariya 3

4 raj kishore gurjar 7

Maintaining a running Total

The way in which awk creates and initializes variables can be used to maintain an updated or running

total on items in a database.

$ cat ex4.ak

BEGIN {

FS=":"

}

{

name=$1

number=$2

total=$3 * $4

running=running+total

print name,total,running

}

$ awk -f ex4.ak records

anuj singh tomar 12 12

Anuj singh tomar 12 24

satyendra narwariya 28 52

raj kishore gurjar 56 108

Using the printf function to format output

the awk utility borrows some of its notation and functions from C language, in which the utility is

written. May be Kernighan, who was an author of both, had something to do with it. the C function

Awk Programming Notes

An Original Work By: - Anuj Singh Tomar Mobile: +919926604345
9

printf, is commonly used in awk code to provide additional formating capabilities over basic print

Left and Right justifying the output

Modify the printf function as follows of the previous example:-

printf "%-20s %10s %10s\n", name,total,running

The newly added format specifiers -20 and 10 have altered the appearance of the output .These

numerical specifiers create minimum field widths of 20 and 10,10 characters. Their respective variables

are left and right,right

Output:

$ awk -f ex4.ak records

anuj singh tomar 12 12

Anuj singh tomar 12 24

satyendra narwariya 28 52

raj kishore gurjar 56 108

navdeep rajput 30 138

Aligning the decimal and truncating numbers

All decimal points in the output should be aligned to do this use following:

%10.2f = tells to right align a floating point number held to a precision of two decimal places rather

than a string. This results in an improved alignment.

COMMAND SUMMARY

 -Fcharacter

When used on command line the -F flag informs awk to use the specified character as the field

separator.

 -v variablename=value

Assign the value to variable before execution of the program . such variable values are available

to the BEGIN block of an awk program.

 ;

Separates actions in a block

 BEGIN

Instructs awk to perform the following block of actions before processing of the database.

 END

Instructs awk to perform the following block of actions after processing of the database.

Awk Programming Notes

An Original Work By: - Anuj Singh Tomar Mobile: +919926604345
10

Summary of awk predefined variables

 $#

the value of @# is the content of the #th field in the current record.

 $0

the value of $0 is the content of all the fields in the current record.

 NF

the value of NF is the number of fields in the current record.

 NR

The value of NR is the Record number of the current record.

 FS

The value of FS is the value of the field separator. Default separators (Delimiters) are one or

more spaces, or a tab.

 OFS

The output field separator, a space by default.

 RS

The value of RS is the value of the record separator , the default separator is a newline

character.

 ORS

the output record separator , by default a newline.

Summary of awk printing commands

 printf “string”

Prints the string enclosed by the double quotes.

 printf “\tstring\n”

prints the string enclosed by double quotes, preceded by a tab and followed by a newline.

 print “string %s \n”, variable

print the string in “” replacing %s with the variable and starting at a newline.

 printf “%ns” , variable

printf string variable right justified to n number of spaces

 printf “%-ns” , variable

printf string variable left justified to n number of spaces

 printf “%nf”, variable

print the value of variable as a floating point number, right justified against the end space of a

field n characters wide.

 printf “%n.nf”, variable

Awk Programming Notes

An Original Work By: - Anuj Singh Tomar Mobile: +919926604345
11

print the value of variable as a floating point number, rounded to the nth decimal point, right

justified to the nth space..

Summary of operators

TYPE OF OPERATOR OPERATORS FUNCTION

Logical a || b True if either a or b is true.

a && b True if both a and b are true.

! a true if a is not true

Assignment a = b assign value of b in a

a += b a=a+b

Arithmetic +,-,*,/ same meaning as symbol

Relations a==b true if a matches b

a < b true if a < b

a > b true if a > b

a ~ b true if field a contains string b.

	AWK PROGRAMMING
	Ways in which to use Awk
	Identifying variables and strings of characters
	Selecting with regular expressions
	Specifying beginning of lines
	Selecting records by specific database components
	Finding patterns within the fields
	Creating and Using awk command files
	Employing Variables
	Using variable names as words
	Performing arithmetic operations in awk
	Maintaining a running Total
	Using the printf function to format output
	Left and Right justifying the output
	Aligning the decimal and truncating numbers

	COMMAND SUMMARY
	Summary of awk predefined variables
	Summary of awk printing commands
	Summary of operators

